Closing Tue, Jan. 20: 12.5(1)(2)(3)

Closing Thu, Jan. 22: 12.6

Note: No class Monday. No MSC Sunday or Monday. So get your last minute 12.5 questions answered today!

12.5 Lines/Planes in 3 Dimensions

Lines: $x = x_0 + at$, $y = y_0 + bt$, $z = z_0 + ct$ $\mathbf{v} = \langle a, b, c \rangle = direction vector$ $\mathbf{r_0} = \langle x_0, y_0, z_0 \rangle = a position vector$

Planes: $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ $\mathbf{n} = \langle a, b, c \rangle = a \text{ normal vector.}$ $\mathbf{r_0} = \langle x_0, y_0, z_0 \rangle = a \text{ position vector}$

To find equations for a line

Info given?

Find two points

Done.

$$\overrightarrow{\boldsymbol{v}} = \overrightarrow{AB}$$
 (subtract components)

$$\overrightarrow{r_0} = \vec{A}$$

To find the equation for a plane

Info given?

Find three points

Done.

Two vectors parallel to the plane: \overrightarrow{AB} and \overrightarrow{AC}

$$\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC}$$

$$\overrightarrow{r_0} = \overrightarrow{A}$$