Closing Tue, Jan. 20: 12.5(1)(2)(3)
Closing Thu, Jan. 22: 12.6
Note: No class Monday. No MSC
Sunday or Monday. So get your last minute 12.5 questions answered today!
12.5 Lines/Planes in 3 Dimensions Lines: $\mathrm{x}=\mathrm{x}_{0}+\mathrm{at}, \mathrm{y}=\mathrm{y}_{0}+\mathrm{bt}, \mathrm{z}=\mathrm{z}_{0}+\mathrm{ct}$ $v=\langle a, b, c\rangle \quad=\quad$ direction vector $\boldsymbol{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle=$ a position vector

Planes: $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$ $\boldsymbol{n}=\langle a, b, c\rangle \quad=\quad$ a normal vector. $\boldsymbol{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle=$ a position vector

To find equations for a line

Info given?

Find two points

Done.

$$
\vec{v}=\overrightarrow{A B}
$$

(subtract components)

$$
\overrightarrow{r_{0}}=\vec{A}
$$

To find the equation for a plane

Info given?

Done.

Find three points

Two vectors parallel to the plane: $\overrightarrow{A B}$ and $\overrightarrow{A C}$

$$
\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C}
$$

$$
\stackrel{\rightharpoonup}{r_{0}}=\vec{A}
$$

